Web Survey Bibliography
Based on our experience in the mixed-mode (CATI-CAWI) field, we perceived a difference in the length of interview (LOI) between these two modes: CAWI interviews are always briefer than CATI's. Validating this work hypotesis we tried to find out which questions show the greater gap and why. Another aspect that we've investigated is the link between LOI and some socio-demographic variables. With CAWI interviews, we've tried to validate the existance of a link between LOI and the number of questionnaires completed by panelists in the past . We've also tried to estimate CAWI's LOI using CATI's LOI as input and viceversa.
Methods & Data:
To carry out these analysis we've used both metadata, such as LOI and sinlge page completion time, and socio-demographic respondent's characteristics. Those data come from two mixed-mode CATI/CAWI surveys. In both cases we've used an online panel (Opinione.net) as CAWI framework, whereas CATI interviews were collected through a non-probabilistic quota sample design (geographically and demographically representative of Italian population). The first dataset has 1600 CATI interviews and 1020 CAWI interviews, the second one is composed by 752 CATI and 294 CAWI questionnaires respectively.
Results:
As we expected LOI for the CAWI interviews is shorter than the LOI for the CATI interviews (t-test: p-value = 0). Both datasets confirm this work hypotesis. The difference increases when taking into account matrix question type (significative p-value).
Correlation between LOI and socio-demographic variables is stronger in the CATI interviews than in the CAWI. In the former case Pearson's correlation index between LOI and the birth year is statistically significative for both datasets (p-value=0). In the latter case the correlation index is lower and statistically significative only in the first dataset.
We didn't find any correlation between the LOI and the habit of completing questionnaires in the CAWI subsets (ranking+# invitations) (correlation index = -0.014, p-value=0.63).
Using the first dataset we've created a model for estimating the CATI LOI/CAWI LOI ratio. Applying this model to estimate second dataset's ratio, we've obtained a good result (estimated ratio: 1.46; real ratio: 1.5).
GOR Homepage (abstract) / (presentation)
Web survey bibliography (4086)
- Displaying Videos in Web Surveys: Implications for Complete Viewing and Survey Responses; 2017; Mendelson, J.; Lee Gibson, J.; Romano Bergstrom, J. C.
- Using experts’ consensus (the Delphi method) to evaluate weighting techniques in web surveys not...; 2017; Toepoel, V.; Emerson, H.
- Mind the Mode: Differences in Paper vs. Web-Based Survey Modes Among Women With Cancer; 2017; Hagan, T. L.; Belcher, S. M.; Donovan, H. S.
- Answering Without Reading: IMCs and Strong Satisficing in Online Surveys; 2017; Anduiza, E.; Galais, C.
- Ideal and maximum length for a web survey; 2017; Revilla, M.; Ochoa, C.
- Social desirability bias in self-reported well-being measures: evidence from an online survey; 2017; Caputo, A.
- Web-Based Survey Methodology; 2017; Wright, K. B.
- Handbook of Research Methods in Health Social Sciences; 2017; Liamputtong, P.
- Lessons from recruitment to an internet based survey for Degenerative Cervical Myelopathy: merits of...; 2017; Davies, B.; Kotter, M. R.
- Web Survey Gamification - Increasing Data Quality in Web Surveys by Using Game Design Elements; 2017; Schacht, S.; Keusch, F.; Bergmann, N.; Morana, S.
- Effects of sampling procedure on data quality in a web survey; 2017; Rimac, I.; Ogresta, J.
- Comparability of web and telephone surveys for the measurement of subjective well-being; 2017; Sarracino, F.; Riillo, C. F. A.; Mikucka, M.
- Achieving Strong Privacy in Online Survey; 2017; Zhou, Yo.; Zhou, Yi.; Chen, S.; Wu, S. S.
- A Meta-Analysis of the Effects of Incentives on Response Rate in Online Survey Studies; 2017; Mohammad Asire, A.
- Telephone versus Online Survey Modes for Election Studies: Comparing Canadian Public Opinion and Vote...; 2017; Breton, C.; Cutler, F.; Lachance, S.; Mierke-Zatwarnicki, A.
- Examining Factors Impacting Online Survey Response Ratesin Educational Research: Perceptions of Graduate...; 2017; Saleh, A.; Bista, K.
- Usability Testing for Survey Research; 2017; Geisen, E.; Romano Bergstrom, J. C.
- Paradata as an aide to questionnaire design: Improving quality and reducing burden; 2017; Timm, E.; Stewart, J.; Sidney, I.
- Fieldwork monitoring and managing with time-related paradata; 2017; Vandenplas, C.
- Interviewer effects on onliner and offliner participation in the German Internet Panel; 2017; Herzing, J. M. E.; Blom, A. G.; Meuleman, B.
- Interviewer Gender and Survey Responses: The Effects of Humanizing Cues Variations; 2017; Jablonski, W.; Krzewinska, A.; Grzeszkiewicz-Radulska, K.
- Millennials and emojis in Spain and Mexico.; 2017; Bosch Jover, O.; Revilla, M.
- Where, When, How and with What Do Panel Interviews Take Place and Is the Quality of Answers Affected...; 2017; Niebruegge, S.
- Comparing the same Questionnaire between five Online Panels: A Study of the Effect of Recruitment Strategy...; 2017; Schnell, R.; Panreck, L.
- Nonresponses as context-sensitive response behaviour of participants in online-surveys and their relevance...; 2017; Wetzlehuetter, D.
- Do distractions during web survey completion affect data quality? Findings from a laboratory experiment...; 2017; Wenz, A.
- Predicting Breakoffs in Web Surveys; 2017; Mittereder, F.; West, B. T.
- Measuring Subjective Health and Life Satisfaction with U.S. Hispanics; 2017; Lee, S.; Davis, R.
- Humanizing Cues in Internet Surveys: Investigating Respondent Cognitive Processes; 2017; Jablonski, W.; Grzeszkiewicz-Radulska, K.; Krzewinska, A.
- A Comparison of Emerging Pretesting Methods for Evaluating “Modern” Surveys; 2017; Geisen, E., Murphy, J.
- The Effect of Respondent Commitment on Response Quality in Two Online Surveys; 2017; Cibelli Hibben, K.
- Pushing to web in the ISSP; 2017; Jonsdottir, G. A.; Dofradottir, A. G.; Einarsson, H. B.
- The 2016 Canadian Census: An Innovative Wave Collection Methodology to Maximize Self-Response and Internet...; 2017; Mathieu, P.
- Push2web or less is more? Experimental evidence from a mixed-mode population survey at the community...; 2017; Neumann, R.; Haeder, M.; Brust, O.; Dittrich, E.; von Hermanni, H.
- In search of best practices; 2017; Kappelhof, J. W. S.; Steijn, S.
- Redirected Inbound Call Sampling (RICS); A New Methodology ; 2017; Krotki, K.; Bobashev, G.; Levine, B.; Richards, S.
- An Empirical Process for Using Non-probability Survey for Inference; 2017; Tortora, R.; Iachan, R.
- The perils of non-probability sampling; 2017; Bethlehem, J.
- A Comparison of Two Nonprobability Samples with Probability Samples; 2017; Zack, E. S.; Kennedy, J. M.
- Rates, Delays, and Completeness of General Practitioners’ Responses to a Postal Versus Web-Based...; 2017; Sebo, P.; Maisonneuve, H.; Cerutti, B.; Pascal Fournier, J.; Haller, D. M.
- Necessary but Insufficient: Why Measurement Invariance Tests Need Online Probing as a Complementary...; 2017; Meitinger, K.
- Nonresponse in Organizational Surveying: Attitudinal Distribution Form and Conditional Response Probabilities...; 2017; Kulas, J. T.; Robinson, D. H.; Kellar, D. Z.; Smith, J. A.
- Theory and Practice in Nonprobability Surveys: Parallels between Causal Inference and Survey Inference...; 2017; Mercer, A. W.; Kreuter, F.; Keeter, S.; Stuart, E. A.
- Is There a Future for Surveys; 2017; Miller, P. V.
- Reducing speeding in web surveys by providing immediate feedback; 2017; Conrad, F.; Tourangeau, R.; Couper, M. P.; Zhang, C.
- Social Desirability and Undesirability Effects on Survey Response latencies; 2017; Andersen, H.; Mayerl, J.
- A Working Example of How to Use Artificial Intelligence To Automate and Transform Surveys Into Customer...; 2017; Neve, S.
- A Case Study on Evaluating the Relevance of Some Rules for Writing Requirements through an Online Survey...; 2017; Warnier, M.; Condamines, A.
- Estimating the Impact of Measurement Differences Introduced by Efforts to Reach a Balanced Response...; 2017; Kappelhof, J. W. S.; De Leeuw, E. D.
- Targeted letters: Effects on sample composition and item non-response; 2017; Bianchi, A.; Biffignandi, S.